(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, fib1(Y, add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fib(N) → sel(N, fib1(s(0'), s(0')))
fib1(X, Y) → cons(X, fib1(Y, add(X, Y)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
fib(N) → sel(N, fib1(s(0'), s(0')))
fib1(X, Y) → cons(X, fib1(Y, add(X, Y)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sel,
fib1,
addThey will be analysed ascendingly in the following order:
add < fib1
(6) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_cons4_0(0) ⇔ hole_cons2_0
gen_cons4_0(+(x, 1)) ⇔ cons(0', gen_cons4_0(x))
The following defined symbols remain to be analysed:
sel, fib1, add
They will be analysed ascendingly in the following order:
add < fib1
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_0':s3_0(
n6_0),
gen_cons4_0(
+(
1,
n6_0))) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n6
0)
Induction Base:
sel(gen_0':s3_0(0), gen_cons4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
sel(gen_0':s3_0(+(n6_0, 1)), gen_cons4_0(+(1, +(n6_0, 1)))) →RΩ(1)
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_cons4_0(0) ⇔ hole_cons2_0
gen_cons4_0(+(x, 1)) ⇔ cons(0', gen_cons4_0(x))
The following defined symbols remain to be analysed:
add, fib1
They will be analysed ascendingly in the following order:
add < fib1
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add(
gen_0':s3_0(
n287_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n287_0,
b)), rt ∈ Ω(1 + n287
0)
Induction Base:
add(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
add(gen_0':s3_0(+(n287_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(add(gen_0':s3_0(n287_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c288_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
add(gen_0':s3_0(n287_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n287_0, b)), rt ∈ Ω(1 + n2870)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_cons4_0(0) ⇔ hole_cons2_0
gen_cons4_0(+(x, 1)) ⇔ cons(0', gen_cons4_0(x))
The following defined symbols remain to be analysed:
fib1
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol fib1.
(14) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
add(gen_0':s3_0(n287_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n287_0, b)), rt ∈ Ω(1 + n2870)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_cons4_0(0) ⇔ hole_cons2_0
gen_cons4_0(+(x, 1)) ⇔ cons(0', gen_cons4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
add(gen_0':s3_0(n287_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n287_0, b)), rt ∈ Ω(1 + n2870)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_cons4_0(0) ⇔ hole_cons2_0
gen_cons4_0(+(x, 1)) ⇔ cons(0', gen_cons4_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
fib :: 0':s → 0':s
sel :: 0':s → cons → 0':s
fib1 :: 0':s → 0':s → cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → cons → cons
add :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_cons2_0 :: cons
gen_0':s3_0 :: Nat → 0':s
gen_cons4_0 :: Nat → cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_cons4_0(0) ⇔ hole_cons2_0
gen_cons4_0(+(x, 1)) ⇔ cons(0', gen_cons4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':s3_0(n6_0), gen_cons4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)